
atmosphere

Article

Sensitivity of a Bowing Mesoscale Convective
System to Horizontal Grid Spacing in
a Convection-Allowing Ensemble

John R. Lawson 1,2,3,* , William A. Gallus, Jr. 3 and Corey K. Potvin 2,4

1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman,
OK 73072, USA

2 NOAA/OAR/National Severe Storms Laboratory, Norman, OK 73072, USA; corey.potvin@noaa.gov
3 Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011, USA;

wgallus@iastate.edu
4 School of Meteorology, University of Oklahoma, Norman, OK 73072, USA
* Correspondence: john.lawson@noaa.gov

Received: 24 February 2020; Accepted: 8 April 2020; Published: 14 April 2020
����������
�������

Abstract: The bow echo, a mesoscale convective system (MCS) responsible for much hail and wind
damage across the United States, is associated with poor skill in convection-allowing numerical
model forecasts. Given the decrease in convection-allowing grid spacings within many operational
forecasting systems, we investigate the effect of finer resolution on the character of bowing-MCS
development in a real-data numerical simulation. Two ensembles were generated: one with a single
domain of 3-km horizontal grid spacing, and another nesting a 1-km domain with two-way feedback.
Ensemble members were generated from their control member with a stochastic kinetic-energy
backscatter scheme, with identical initial and lateral-boundary conditions. Results suggest that
resolution reduces hindcast skill of this MCS, as measured with an adaptation of the object-based
Structure–Amplitude–Location method. The nested 1-km ensemble produces a faster system than in
both the 3-km ensemble and observations. The nested 1-km simulation also produced stronger cold
pools, which could be enhanced by the increased (fractal) cloud surface area with higher resolution,
allowing more entrainment of dry air and hence increased evaporative cooling.

Keywords: weather prediction; ensembles; thunderstorms; horizontal grid spacing; resolution;
object-based; stochastic

1. Introduction

Within the group of mesoscale convective systems (MCSs), systems that display bowing structures
along the convective line are among the most poorly forecast [1]. Lawson and Gallus [2] showed
that smaller (progressive) bow echoes were likely poorly forecast due to inherent low predictability
more so than deficiencies in microphysical parameterizations, and that improvements in synoptic-
and mesoscale initial and lateral-boundary conditions (ICs and LBCs, respectively) would yield only
minor skill increases at best. The diminishing returns from more accurate large-scale ICs and LBCs
were discussed by Durran and Weyn [3], and stem from the small-scale sensitivity to minuscule error
on the large scale via downscale error cascade and growth [4].

Many operational centers use ensemble prediction systems (EPSs) to account for uncertainty in
the forecast. Ensemble diversity is generated by, e.g., varying the ICs and LBCs, using numerous
parameterizations (e.g., [5]), perturbing parameterization tendencies stochastically (e.g., [6]), and so
on. Uncertainty in the forecast can be measured by the difference between the perturbation members
(or spread), which represents heightened sensitivity to earlier perturbations [7]. At a given lead time,
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higher spread is often associated with lower skill [8], and represents lower inherent predictability and
a shorter predictability time horizon [9,10]. Hence, uncertainty is an important output from an EPS in
its own right. In the following sections, we use two EPSs not to measure predictability but to increase
the signal-to-noise ratio in our sensitivity tests (as in [11]).

A year-on-year increase in computer power allows operational centers to decrease horizontal
grid spacing (∆x), which in turn allows smaller and smaller phenomena to be explicitly resolved.
However, there is conflicting evidence regarding the benefit of higher resolution. Recently, Lawson et al.
(in review, Monthly Weather Review) found rotating-thunderstorm forecasts in the US Southeast to
benefit only modestly from a ∆x decrease. During strong synoptic forcing, Schwartz and Sobash [12]
showed a larger benefit from 1-km ensemble forecasts across the eastern two-thirds of the United
States over 3-km ensembles (with comparable skill during summertime), with MCSs providing much
of the benefit at 1 km by virtue of their size and longer predictability horizon. Thielen and Gallus [13]
found the same ∆x reduction generated more linear MCSs, but overall skill did not increase. Further,
Sobash et al. [14] ran ∆x = 1 km deterministic forecasts with surrogate-severe Gaussian smoothing [15]
which outperformed those with ∆x = 3 km across all investigated severe-weather diagnostics. Potvin
and Flora [16] found improved grid spacing may be beneficial even with coarsened or inferior ICs;
a smaller ∆x may also be essential to represent the k5/3 energy cascade on sub-mesoscales [17].

Many studies have found a smaller ∆x may systematically change MCS characteristics exhibited
at a larger ∆x; for example, simulations with a smaller ∆x in Bryan and Morrison [18] entrained dry
mid-level air faster, and developed linear MCSs more rapidly, than simulations with a larger ∆x.
Moreover, the reducing ∆x from 3 km to 1 km in Squitieri and Gallus [19] led to stronger cold pools and
faster systems. The higher-resolution simulated thunderstorms in Bryan and Morrison [18] contained
more evaporation due to better resolved turbulence, which led to stronger cold pools. Furthermore,
Lebo and Morrison [20] found entrainment and detrainment was suppressed in simulations with ∆x
larger than 500 m. Results from a study of linear MCS evolution [21] at horizontal grid spacings of
250 m and 750 m suggest finer resolutions may limit or inhibit the descent of downdrafts within the
system’s development. This yielded faster cold-pool propogation at 750 m than at 250 m, but as the
simulation progressed, the 250-m simulation generated a deeper cold pool. Hence, not only are these
MCS-simulation differences sensitive to the system’s maturity, but there may be different sensitivities
of the system to resolution below 1 km (which is outside the scope of the present study).

Crucially, Johnson et al. [22] found the biggest impact of increased resolution is on the smallest
resolved processes. As the largest MCS uncertainty is associated with small length scales [2],
this motivates us to ask: how sensitive to ∆x is the simulated structure, speed, and uncertainty of a particular
bowing MCS within an EPS?

Herein, we investigate the sensitivity of a ∆x = 3 km ensemble to the inclusion of a two-way-feedback
nest of ∆x = 1 km for a MCS case. This nested configuration allows direct comparison of gridpoints
within the simulations’ domain overlap. The two EPSs use a single set of ICs and LBCs that yield
a bow echo in all simulations. Both EPSs comprise ten equally likely perturbation members, created
with a stochastic kinetic-energy backscatter (SKEB) scheme [23–25]. We chose the SKEB scheme to
generate perturbations, and hence increase the simulation sample size, to allow use of fixed ICs and
LBCs that yield a bow echo in each member. We will show that use of SKEB did not substantially bias the
control experiment. We analyze whether inclusion of a nested 1-km domain increases the spread of MCS
evolution in simulated composite reflectivity. From previous research discussed above, we may expect
skill of the ensemble to increase as ∆x decreases, but this skill–∆x relationship is tenuous (as discussed
above). We estimate skill using the median forecast member, evaluated against observed reflectivity.
We also detail systematic changes in the simulated MCS’s structure and speed as ∆x decreases. While our
focus on a single case and model configuration precludes a more general conclusion about season-long
performance as a function of resolution, it allows a deeper analysis of the physical reasons for systematic
sensitivity to ∆x.
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2. Data and Methods

The bowing MCS of 15–16 August 2013 brought damaging wind and hail to Kansas, Oklahoma,
and Texas. This MCS developed under northwesterly flow at 500 hPa, downstream of a height ridge,
while winds became weak and variable in direction towards the surface (not shown). At the surface,
a weak frontal wave associated with a mean sea-level pressure minimum near the Nebraska–Kansas
border moved south (not shown), and initiation occurred to the north of this boundary around
2200 UTC on Day 1 (Figure 1). Initiation and upscale growth appear to be focused by a mesoscale
convective vortex (MCV) embedded within the frontal wave, as analyzed and discussed by Storm
Prediction Center forecasters in Mesoscale Discussions [26]. The moist convection formed a line by
2200 UTC and began bowing at 2330 UTC. The MCS produced a swath of strong wind (up to 34 m s−1

or 67 kt) and large hail (up to 4.4 cm or 1.75 in) in central Kansas and near the Oklahoma–Texas border
(Figure 1).

Figure 1. Overview of the bowing MCS of interest: (a) time-composited image of observed composite
radar reflectivity at three times (2200 UTC Day 1, 0200 UTC Day 2, and 0600 UTC Day 2), as the
system moved south. Dashed lines roughly delineate the three times from which reflectivity is drawn;
and (b) National Centers for Environmental Information storm data for all wind reports exceeding
25 m s−1 (50 kt; in blue) and hail reports exceeding 2.54 cm (1 in; in green).

We use the Weather Research and Forecasting (WRF; Powers et al. [27]) version 3.5 to create the
ensemble simulations. We initialize our simulations with the p09 member of the 11-member Global
Ensemble Forecast System Reforecast dataset (GEFS/R2; Hamill et al. [28]) initialized at 0000 UTC
15 August 2013 (i.e., the MCS of interest is roughly 21 h into the simulation). Motivated by the
desire to simulate a bowing MCS in all members, we used a SKEB scheme to generate perturbations,
and a constant IC/LBC dataset and parameterization suite that performed well in preliminary testing
(also see [2]). The SKEB scheme was developed in response to excessive kinetic energy dissipation
near the truncation scale of NWP models [23,24], and adapted for WRF in Berner et al. [25]. While we
use SKEB to increase the signal-to-noise ratio of our grid-spacing experiment, its use may result
in a resulting bias of the ensemble mean. As described in Berner et al. [29], a simple stochastic
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scheme can push a non-linear model from a uniform or Gaussian distribution into a non-Gaussian
one (e.g., asymmetric bimodal), biasing the mean state. However, we submit that perturbations from
SKEB shift the simulations closer to the real-life attractor, and any shift of the mean corresponds to
a convergence to a realistic state (albeit not necessarily the observed state at the given time). In any case,
we find there is no obvious systematic bias introduced by the SKEB scheme before convective initiation:
Figure 2 shows the distribution of 10-m wind-speed point-wise differences between the control
(no-SKEB) and first ensemble member, after 3 h of simulation, for both ensembles. This quasi-Gaussian
distribution is general to other ensemble members, variables (2-m temperature and mixing ratio),
and bin sizes, and hence supports the deployment of SKEB as a variance generator in the present study.

Figure 2. Distribution of 10-m wind-speed point-wise differences between the control (no-SKEB) and
first ensemble member after 3 h of simulation, for both ensembles (see key). A positive value indicates
that SKEB has increased the wind speed at a given gridpoint. The y-axis indicates percentage of total
grid points.

We used Thompson 1.5-moment microphysics, after preliminary testing showed it produced
a MCS most similar to that observed [2]. Sensitivity of the MCS to microphysics parameterizations is
substantial (e.g., [13]), but outside the scope of the present study. Other parameterizations are listed in
Table 1. The single-nest 3-km EPS has eleven members: the control (with no SKEB scheme) and ten
SKEB-perturbation members (s01–s10). The domain locations are labeled in Figure 3. Each perturbation
member uses a different randomness seed to generate the backscatter pattern. The double-nest (3-km,
1-km) EPS uses an identical 3-km parent domain but with a two-way-feedback nested 1-km domain
(Figure 3). The double-nest ensemble also has eleven members: the control and ten SKEB-perturbation
members (s11–s20). The seeds across both EPS are unique. The two-way feedback was chosen to allow
direct comparison between the two 3-km domains in the area in which the MCS developed. Each nest
uses a timestep (in seconds) set to 2∆x (i.e., 6 s for the 3-km nest and 2 s for 1-km), after preliminary
testing revealed larger timesteps incurred instability in the simulation. Lateral boundary conditions
are updated every 3 h on the 3-km grid.
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Figure 3. Domains used in the present study. The single-nest ensemble uses the 3-km domain;
the double-nest ensemble nests the 1-km domain inside the 3-km domain.

Table 1. Parameterization schemes used in the numerical modeling configuration.

Parameterization Scheme

Microphysics Thompson
Longwave Radiation RRTM
Shortwave Radiation Dudhia

Surface Layer MYNN
Land Surface Noah

Planetary Boundary Layer MYNN Level 2.5

Verification and Spread

In addition to traditional gauges of ensemble spread, such as standard deviation at the ∆x
scale, we implement a score that instead filters the simulation grids into objects (i.e., thunderstorms).
The common 3-km grids allow use of such object-based skill scores to evaluate the ensemble spread and
performance, without employing an interpolation or filtering step. We use a slightly modified version
of the Structure–Amplitude–Location (SAL) method [30,31]. The original method was formulated
for precipitation fields, and identifies objects (i.e., coherent structures that meet a strength threshold)
in both simulations and observations. The simulation is then penalized according to normalized
differences as follows:

• Structure (S), between −2 and +2. A positive value indicates simulated objects are too large
and/or too flat;

• Amplitude (A), between −2 and +2. A positive value indicates the simulation has overestimated
the domain-averaged variable (precipitation, reflectivity, etc.);

• Location (L), between 0 and +2. A positive value indicates a displacement of simulated objects
from those observed.

Our modification uses simulated and observed composite reflectivity instead of accumulated
precipitation. We obtained composite NEXRAD Level III radar reflectivity from the Iowa State
University [32]. Before reaching the archives, Base Reflectivity product data are composited with the
GEMPAK program nex2img, after which false echoes are removed after comparison with the Net Echo
Top product. Total absolute SAL (taSAL) is computed as follows:



Atmosphere 2020, 11, 384 6 of 19

taSAL = |S|+ |A|+ |L| (1)

and varies between 0 (perfect forecast) and 6. The three components are combined this way in the
absence of strong evidence to suggest otherwise, though unequal weightings are used in similar
schemes (e.g., Method for Object-Based Diagnostic Evaluation; [33]). To gauge each EPS’s ability to
capture the MCS structure, we take the median ensemble member (instead of the unphysical ensemble
mean) to represent each EPS. This is done by ranking all ten perturbation members by their taSAL
score, and taking the taSAL value halfway between the fifth and sixth most skillful members.

Objects are identified by masking the reflectivity field below a given dBZ threshold, and in our
modification, we include objects only when they comprise a given number of gridpoints that exceed
a size threshold (known as its footprint). As SAL was originally designed for a smoothed accumulated
precipitation field, suitable footprint and threshold values were tested for instantaneous reflectivity
fields. Values of 15–30 dBZ and 100–500 gridpoints (900–4500 km2 in area) were relatively robust to
small changes in these parameters. Above 30 dBZ and 500 gridpoints, there was substantial sensitivity
to changes in threshold and footprint, due to a smaller sample size of objects at a given time and across
the simulation period. High thresholds above 30 dBZ often created rapid increases in SAL from hour
to hour as objects ‘appeared’ as they grew critically large. Conversely, much smaller thresholds and
footprints captured too much signal from stratiform precipitation, which detracts from the focus on
intense bow-echo convection in the simulation. Ultimately, the 15 dBZ threshold and 200 gridpoint
footprint provided a robust compromise, and is used in the following text to estimate spread and skill
in the ensemble simulations. Further discussion of the use of SAL to evaluate reflectivity forecasts can
be found in Lawson and Gallus [31].

3. Results

3.1. Sensitivity of Structure to ∆x

In the single-nest EPS, convective initiation occurs at the same time as in observations (2000 UTC
on Day 1; not shown). Between 2100 UTC on Day 1 and 0600 UTC on Day 2, a spectrum of single-nest
solutions—ranging from a collection of cells to a bow echo—are in contrast to the observed line of
convection. The simulated MCSs in single-nest members generally lag ∼75 km behind the observed
system in its southward progression. By 0600 UTC on Day 2, most single-nest members have captured
the bow echo in Oklahoma.

The double-nested (3-km/1-km) EPS has more inter-member agreement by 2100 UTC on Day 1
than in the single-nest EPS, with all members creating an MCS in a similar location to the observed
system. At 0000 UTC on Day 2, all members have a bow echo, but it is too large in the zonal
direction. In contrast to the single-nest EPS, the bow echoes simulated in double-nest members
are co-located with, or in advance (to the south) of, the observed system throughout the lifetime of
the system (2100 UTC–0600 UTC). At 0300 UTC on Day 2, almost all members reproduce the observed
system, with approximately correct radii of curvature and lengthscale. In general, double-nest EPS
members resemble the observed system better than members in the single-nest EPS, but accelerate
the MCS too quickly. The following subsection now analyzes whether this translates to better
object-based performance.

3.2. Sensitivity of Spread and Skill to ∆x

Following Tennekes [34], we may expect more spread within the double-nest EPS due to higher
sensitivity of mesoscale processes to small perturbations when ∆x is decreased. Computation of
standard deviation in preliminary work (performed on the 3-km grid) across multiple sensible weather
variables (including 2-m temperature, 10-m wind; not shown) shows that ensemble uncertainty is
similar in both ensembles until around 26 h (0200 UTC on Day 2). After this, standard deviation in
the single-nest EPS grows faster and remains larger than in the double-nest EPS until the end of the
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simulation. This signal is seen in Figures 4 and 5 as a larger spread, by eye, in the positioning of the
bow-echo system in the single-nest EPS. The above method uses a point-wise variance estimation at
the ∆x scale, and is therefore not appropriate for assessing the spread of structural solutions. Hence,
we implement an object-based score (SAL) to add weight to subjective conclusions reached herein.

Figure 6 shows the median, interquartile range, and spread of the EPS for both the single- and
double-nested experiments. At each forecast time shown (every 60 min), the two EPSs are compared.
The smaller median value is colored green (i.e., a better forecast) while the larger is colored red.
Likewise, the larger interquartile range is colored yellow (more variation between ensemble members,
ignoring outliers), while the smaller spread is colored gray.

Figure 4. Thumbnails of observed (a) and simulated (b–l) composite reflectivity, valid at 0300 UTC
16 August 2013 (27 h simulation time), for the single-nest EPS. Reflectivity is contour-filled in dBZ
according to the scale.
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Figure 5. As Figure 4, but for the double-nest (3-km/1-km) EPS.

Figure 6 shows the single-nest EPS has a lower median (better forecast) than the double-nest EPS
for ∼75% of the time periods. The single-nest EPS also has more variation in taSAL score (76% of
times, neglecting the first three hours with little convective activity). The exception to this pattern
occurs between 0200 UTC and 0500 UTC on Day 2, inclusive (26 h to 29 h forecast hours). By this
time the MCS, having grown upscale from isolated cells, displays a bowing structure, and there
is good agreement between double-nest EPS members (but not in the single-nest EPS). The poor
performance of the double-nest EPS before 0200 UTC may be related to its overly hasty development,
and excessive west–east length, of the bow echo. After this time, however, the double-nest EPS has
a lower median until 0500 UTC, matching its subjectively better reflectivity fields. Throughout the
entire period, there is little correlation between taSAL variance and median (skill) at each hour. Further,
the S and A components are comparable in magnitude throughout, whereas L is an order of magnitude
smaller. Hence, we complement the L-component assessment of location error with centroid tracking
in later subsections.
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Figure 6. Box plot of total absolute SAL (taSAL) for the (a) single- and (b) double-nested EPSs. Features
shown include median (linearly interpolated; horizontal line), interquartile range (box), and spread
of the whole ensemble (whiskers). The lower median (better forecast) at each time is colored green,
while the higher median is red. The larger interquartile range at each time is colored yellow; the smaller
is colored gray.

3.3. Sensitivity of System Speed to ∆x

We now investigate the difference in development and acceleration of the bow echo as ∆x
decreases. We subjectively chose representative members within both ensembles by calculating
taSAL for each member, and choosing the median member at 0000 UTC (as the bow echo is reaching
maturity in observations). The single-nest (s06) and double-nest (s12) members are hence discussed
in the following section. In the following analysis, cold-pool strength is depicted by the density
potential temperature perturbation field (θρ), as in Markowski and Richardson [35]. It is computed by
subtracting density potential temperature θρ from the domain mean at each timestep, where

θρ = θ(1 + 0.61rv − rh) (2)

and where rv and rh are the mixing ratios of water vapor and all other hydrometeor species, respectively.
Figure 7 presents observed and simulated composite reflectivity, and simulated θρ to depict the
near-surface cold pool, at three times: 21 h, 24 h, and 27 h simulation time. At 21 h, the cold pool is
∼50 km farther south in the double-nest member, but the peak magnitude of θρ is similar in both
members at this time (∼12 K). Three hours later, the double-nest member’s cold pool is substantially
more developed in areal coverage and magnitude, and has progressed farther south. Three hours later
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still, as the bow echo weakens, there is little difference in magnitude between the two simulations,
though the double-nest member leaves a more pronounced wake of cold air. Values have also decreased,
however, as θρ has a strong diurnal dependence. Despite the more distinctive bow-echo structure in
the double-nest member, the bow-echo location in the single-nest member is closer to that observed.

Figure 7. Observed composite reflectivity (leftmost column), and simulated fields of composite
reflectivity (second and third column from left) and density potential temperature perturbation (two
rightmost columns) from total absolute SAL median single- and double-nest EPS members. Fields are
valid at 2100 UTC on Day 1 (a–e), 0000 UTC on Day 2 (f–j), and 0300 UTC on Day 2 (k–o). Times are
listed on the right as hours since initialization.

Figure 8 shows the progression of the MCS-object centroids with time. This was done by taking
the reflectivity objects identified using the SAL technique (and the same parameters used herein),
and tracking the location of the object’s centroid every 20 min (the output frequency). As in Figure 7,
the mean ensemble system speed is higher in the double-nest EPS, denoted by the y-position of the
timestamp labels at a given time. The spread of bow-echo centroid locations is initially large in the
double-nest EPS, but becomes more similar to the single-nest over time. For instance, contrast the
two clusters of centroids at 0400 UTC in the single-nest EPS to the more compact single group in the
double-nest EPS.
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Figure 8. Paths taken by the centroids of the MCS in each ensemble member for the single- (left) and
double-nest (right) EPSs between 2200 UTC on Day 1 (22 h) and 0800 UTC on Day 2 (32 h). The centroid
position is marked every two hours for each ensemble member by a dot. The color corresponds to
the labeled time stamps, which are positioned at the ensemble-mean north-south position. Hence,
locational spread is represented by a larger distance between dots of the same color.

We now use the same median members as in Figure 7 to investigate the bow echo propagation
mechanism. The movement of a cold pool is related to its strength (perturbation of density or 2-m
potential temperature) and hence pressure gradient. Prior to MCS development at 1800 UTC on Day 1,
the gradient of 2-m potential temperature is similar (∼0.75×10−3 K m−1) in the single- and double-nest
members (Figure 9a,d). Four hours later, the cold pool has moved farther south in the double-nest
member (Figure 9b,e), marked at its leading edge by larger values of potential-temperature gradient
(∼2×10−3 K m−1) than in the single-nest member. Four hours later still, there is ∼125 km meridional
difference between single- and double-nest cold-pool leading edges (Figure 9c,f), and the double-nest
leading edge is associated with a temperature gradient (2×10−3 K m−1) double in magnitude of the
gradient in the single-nest member. An increased gradient along the double-nest median-member
cold-pool leading edge is also seen in surface pressure (not shown).
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Figure 9. Potential temperature at 2 m (color-filled) taken from total absolute SAL median single- (s06;
a–c) and double-nest (s12; d–f) EPS members. Fields shown at (a,d) 18 h , (b,e) 22 h, and (c,f) 26 h
simulation time. States shown in each panel, from north to south, are Nebraska, Kansas, Oklahoma,
and (the panhandle of) Texas.

The faster movement in the double-nested simulation is similar to behavior documented by
Weisman et al. [36]. In their simulations of linear MCSs—with ∆x ranging from 1 km to 12 km—the
higher-resolution simulations better developed a feed of low-θe air. They also found a slower system
evolution on coarser grids, and that MCSs developing near MCVs (such as in the present study) may
be more predictable due to associated dynamical balance. To gauge solely the sensitivity of system
speed to resolution, we compare the control members from single- and double-nest experiments;
the only difference between the two simulations is the addition of the inner nest (i.e., no SKEB scheme
is active). Figure 10 shows perturbation water-vapor mixing ratio (q′) at 800 hPa at three times, for the
two control members. The 35-dBZ simulated composite reflectivity contour, smoothed with a 9-km
Gaussian filter, is overlaid for reference. At 2000 UTC on Day 1, there is little difference between the
two simulations (cf. panel a,d). The rear-inflow jet is associated with drier air behind the burgeoning
moist convection. As the system intrudes farther into the region covered by the 1-km nest (cf. panel b
with e), the drier air in the double-nest run penetrates farther south than in the single-nest run, and is
associated with a more coherent, bowing segment of high reflectivity. This is even more pronounced by
2200 UTC (cf. panel c with f). This bowing also requires descent of strong winds aloft; such downdrafts
may themselves be sensitive to resolution, given that the strength of convective downdrafts is related
to microphysical processes (condensate loading, evaporation, and so on).
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Figure 10. Perturbation water-vapor mixing ratio at 800 hPa (color-filled) taken from control members
of single-nest (a–c) and double-nest (d–f) experiments. Black lines contour the 35 dBZ composite
reflectivity field, smoothed with a 9-km Gaussian filter, for reference. Fields shown at 20 h (a,d), 21 h
(b,e), and 22 h (c,f) simulation time. States shown in each panel are Nebraska (upper) and Kansas
(lower), separated by the thin horizontal black line.

Cross-sections perpendicular to the bow-echo apex are shown in Figure 11 at 2100 UTC on Day 1
(cf. Figure 10b,e); winds perpendicular to the cross-section transect are contoured and q′ is color-filled.
Note the cross-sections (Figure 11a,c) were averaged 6 km (two grid points) in each direction normal
to the cross-section transect to improve representivity. During preliminary testing, the averaging
was varied, but did not substantially change the conclusions. While more smoothing increases the
representivity of Figure 11, some finer details are lost. The double-nest control-run cross-section
(Figure 11c) shows winds over 20 m s−1 and low q′ air descending and feeding into the rear of the
bow echo; this is absent in the single-nest run (Figure 11a), and corroborates the latitude–longitude
cross-section at 800 hPa in Figure 10. Taking a similar horizontal slice at 800 hPa in the wind field
for both single- and double-nest members (Figure 12), we find a more coherent rear-inflow jet in the
latter. Whereas strong winds do occur along the bow-echo leading edge in the former (southwest
of the cross-section transect), associated with cellular development (cf. Figure 11b), they are rather
disconnected from the channel of wind farther north. In fact, there is around 30 m s−1 difference in
wind vectors associated with the rear-inflow jet (not shown). In summary, the nested 1-km domain
appears to have an enhanced and more coherent rear-inflow jet, which in turn increases evaporational
cooling. The resultant cold pool is stronger, and accelerates faster due to increased surface pressure
gradients. Note that bow echoes move due to the buoyancy gradient [35], and are not “advected”
along by the winds, and hence we should not necessarily expect rear-inflow jet speed to correlate with
system speed.
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But why may the rear-inflow jet be stronger with a smaller ∆x? The perimeter of
a two-dimensional fractal object (i.e., infinitely complex regardless of zoom level) is sensitive to
the measuring interval [37], and similarly for surface area of three-dimensional objects. Stronger cold
pools in higher-resolution simulations are related to evaporation of falling precipitation [18], enhancing
the convective downdraft at lower levels. Higher horizontal resolution yields a larger surface area of
clouds (which are fractal), and hence the increased interface of dry air and cloud water content may
add to this precipitation evaporation, and hence yield a stronger cold pool.

Figure 11. Cross-sections at 2100 UTC on Day 1: (a,c) height against horizontal distance in the water
mixing ratio perturbation field overlaid with the wind component parallel to the transect (contoured
every 5 m s−1; negative values, marked by dotted lines, indicate a component from right to left on
the panel); and (b,d) latitude–longitude in the composite reflectivity field from the single- (a,b) and
double-nest (c,d) control runs. The blue transects in the right panels, between points A and B, mark the
path of the cross-sections shown in the left panels. Note the height–distance cross-sections (a,c) were
averaged 6 km (two grid points) in each direction normal to the cross-section transect.
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Figure 12. The 800-hPa wind field for (a) single- and (b) double-nested control members at 2100 UTC
on Day 1. Colors indicate wind magnitude (see legend) and vectors indicate both wind direction
and magnitude. Vectors are shown every third grid point (i.e., every 9 km) for clarity; contour-fill
uses all grid points (i.e., ∆x = 3 km). Cross-section transect from Figure 11 is shown by a black line in
both panels.

3.4. Sensitivity of System Speed to Skeb

The region in the wake of an MCS leading edge is turbulent [38], represented herein by the
descending drier air in Figure 11; hence, entrainment may increase in SKEB members, as the SKEB
scheme increases turbulence through the injection of kinetic energy into resolved scales. As discussed
earlier, if this is indeed the case, it represents a convergence towards a more realistic system due to the
reduced dissipation of kinetic energy at the truncated scale.

We find the control (no-SKEB) member of the double-nest EPS has the weakest rear-inflow jet at
2300 UTC on Day 1 out of all its members (seen in 800-hPa mixing-ratio perturbation field; not shown),
and the least coherent and slowest-moving bow echo until 0330 UTC. This connection between the
rear-inflow jet and bow-echo speed is similar to results in the previous subsection. However, in the
single-nest ensemble, the control member does not have the slowest bow echo. As such, further
ensemble simulations are needed to address the link between SKEB perturbations and MCS speed.

4. Summary and Conclusions

Two ∆x = 3 km ensemble simulations of a bowing MCS (or bow echo), one with a nested 1-km
domain, have addressed the hypothesis that a smaller ∆x increases the uncertainty within an ensemble.
An increase of spread in the double-nest (3-km/1-km) simulation does not occur, as measured by
standard deviation of various fields on the 3-km grid (at the ∆x scale). Further analysis of reflectivity
objects via the SAL methodology, in fact, suggests:

• The spread of taSAL scores is larger in the single-nest ensemble. This disputes the hypothesis that
spread increases as ∆x decreases;
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• Skill is higher in the single-nest ensemble, as measured objectively using the ensemble median;
however, MCS structure in simulated reflectivity is subjectively more realistic in the double-nest
ensemble, as expected from the nesting of a higher-resolution domain;

• While both taSAL-measured spread and skill are higher in the single-nest ensemble overall,
there is a lack of correlation between the two over the hourly forecast times, in both ensembles.

The reduced spread of MCS evolutions in the double-nest (3-km/1-km) EPS may be related to the
stronger cold pools, and hence stronger mesoscale forcing, in the higher-resolution nest. The faster
movement in the double-nested (3-km/1-km) simulation is likely driven by a stronger surface-based
cold pool, which occurs with a stronger rear-inflow jet. We propose this may be related to the fractal
nature of clouds and turbulence, as follows: in a higher-resolution simulation, a given cloud object
will have larger surface area (i.e., its fractal dimension increases). More resolved turbulence also
increases dry-air entrainment. These two factors increase the interfacing of dry air with cloud water
content, increasing evaporation. This strengthens the surface-based cold pool and the corresponding
pressure gradient behind and ahead of the MCS’s leading edge. In our simulations, the MCS surges
∼100–200 km farther south at its mature stage (0300 UTC on Day 2) than in coarser simulations.
However, there may well be further competing mechanisms that prevents further MCS acceleration as
resolution decreases, as seen in [21]. In summary, because entrainment is likely underestimated on
the single-nest (3-km) grid through poorly resolved kinematic system structure [39], this compounds
the underestimation also present in subgrid parameterization. The kinematic structure of the MCS is
better captured on the 1-km grid, reducing the underestimation of entrainment, but sub-grid error is
still substantial. It may be that the faster system speed at 1-km is related to this reduction of grid-scale
error, rather than increased realism in a higher-resolution simulation.

We note that location error in SAL is a function of the domain size (i.e., it is normalized by
the domain diagonal, as this is the largest magnitude of error that can occur). Because the location
errors are small relative to domain size, but still substantial given potential point forecasts for the end
user, the taSAL score may not be appropriate for evaluating spread and skill depending on the end
user’s sensitivity to location error. The single-nest ensemble does have more location error, by eye,
in reflectivity fields; however, despite the low weight of the location component, this ensemble has
more taSAL spread than the nested ensemble regardless (i.e., taSAL is a conservative estimate). Further
work into bowing MCS evolution in EPSs should consider the probabilistic distribution of solutions by
using an appropriate score that preserves the ensemble-output estimates of uncertainty (e.g., [40–42]).

The larger bow-echo speed and faster rear-inflow jet winds, when resolution is increased, is also
seen in the authors’ preliminary simulations of two bowing linear MCSs (unpublished), and in a similar
study [43]. We show little advantage, in terms of spread and skill, for the O(30) increase in computer
power to reduce ∆x from 3 km to 1 km. At the least, our results suggests caution against the backdrop
of the grid-spacing arms race regarding bow-echo and MCS prediction. In addition, the spread of
convective mode solutions is not increased by increasing resolution, hence substantial increase in
ensemble membership may not be required to maintain a good sampling within a higher resolution
ensemble. It remains an open question whether the stronger bowing MCS and lower skill of the
double-nest experiment is general to other cases and ensemble configurations. Further, more analysis
of cloud surface area is required to test impact of fractal dimension on entrainment. These questions,
and the sensitivity of bow-echo speed to SKEB perturbations, should be the subject of further work.
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